首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   86篇
  免费   26篇
  2017年   1篇
  2015年   3篇
  2014年   2篇
  2013年   3篇
  2012年   2篇
  2011年   3篇
  2010年   3篇
  2009年   5篇
  2008年   2篇
  2005年   4篇
  2004年   5篇
  2003年   3篇
  2002年   2篇
  2001年   4篇
  2000年   4篇
  1999年   2篇
  1998年   6篇
  1997年   2篇
  1995年   2篇
  1994年   1篇
  1992年   5篇
  1991年   2篇
  1990年   3篇
  1989年   5篇
  1988年   6篇
  1987年   2篇
  1986年   1篇
  1985年   2篇
  1984年   3篇
  1982年   2篇
  1981年   2篇
  1980年   2篇
  1979年   3篇
  1978年   3篇
  1977年   1篇
  1975年   2篇
  1974年   3篇
  1973年   2篇
  1972年   1篇
  1971年   2篇
  1969年   1篇
排序方式: 共有112条查询结果,搜索用时 250 毫秒
81.
I give an historical account and analysis of the scientific priority of the discovery of the polychrome staining of microscopic biological preparations provided by mixtures of eosin plus methylene blue and its derivatives, especially azure B. I maintain that both the formal priority for the discovery of the polychrome staining phenomenon and credit for initiating the development of a technique of polychrome staining properly belong to D. L. Romanowsky. His scientific work demonstrated the possibility of using a simple technique to stain hematological preparations selectively to give good contrast, high resolution and the ability to identify malaria parasites. Romanowsky’s approach constituted the starting point for the development of a family of polychrome stains for microscopic investigation of hematological preparations by a number of his contemporaries.  相似文献   
82.
83.
84.
The permeability to high molecular weight (IgG, 150 kD) proteins of the plasma membrane of receptor-coupled smooth muscles permeabilized with β-escin was determined using confocal microscopy of immunofluorescent tracers and measurement of lactate dehydrogenase (LDH, 135–140 kD) leakage. Permeabilized strips of rabbit portal vein and guinea pig ileum were incubated in a relaxing solution containing mouse anti-smooth muscle α-actin antibody and immunostained with F(ab′)2 labeled with tetramethyl rhodamine isothiocyanate. Confocal light microscopy of Triton X-100 and β-escin permeabilized cells showed homogeneous staining of the cytoplasm, whereas in α-toxin treated and intact preparations only damaged cells at the edges of the strips were stained. Both the Ca2+-sensitizing effect of phenylephrine, in rabbit portal vein, and Ca2+ release by carbachol in guinea pig ileum, were retained after permeabilization and the treatment with the primary antibody. During the 30 min permeabilization, 38%, and within the next 75 min an additional approximately 30%, of the total LDH leaked out from the β-escin-treated group, but not from the α-toxin-treated group (3.2%). The responsiveness to agonist and maximum contractility was improved if the preparations were incubated during the introduction of proteins at 4°C, rather than 24°C. Ca2+-independent myosin light chain kinase (61 kD) contracted the permeabilized portal vein in the absence of free Ca2+ (pCa < 8). In conclusion, permeabilization with β-escin allows the transmembrane passage of 150 kD proteins under our experimental conditions that also retain receptor-coupled signal transduction.  相似文献   
85.
86.
Binding of the urokinase-type plasminogen activator (uPA) to its receptor activates diverse cell signaling pathways. How these signals are integrated so that cell physiology is altered remains unclear. In this study, we demonstrated that migration of MCF-7 breast cancer cells and HT-1080 fibrosarcoma cells on serum-coated surfaces is stimulated by agents that activate ERK, including uPA, epidermal growth factor, and constitutively active MEK1. The promigratory activity of these agents was entirely blocked not only by the MEK-specific antagonist PD098059, but also by antagonists of the Rho-Rho kinase pathway, including Y-27632 and dominant-negative RhoA (RhoA-N19). uPA did not significantly increase the level of GTP-bound RhoA, suggesting that the constitutive activity of the Rho-Rho kinase pathway may be sufficient to support ERK-stimulated cell migration. Paradoxically, Y-27632 and RhoA-N19 increased ERK phosphorylation in MCF-7 cells, providing further evidence that ERK activation alone does not promote cell migration when Rho kinase is antagonized. When MCF-7 cell migration was stimulated by ERK-independent processes such as expression of the beta(3) integrin subunit or changing the substratum to type I collagen, Y-27632 and RhoA-N19 failed to inhibit the response. This study supports a model in which the Ras-ERK and Rho-Rho kinase pathways cooperate to promote cell migration. Neutralizing either pathway is sufficient to block the response to agents that stimulate cell migration by activating ERK.  相似文献   
87.
88.
Phospho-telokin is a target of elevated cyclic nucleotide concentrations that lead to relaxation of gastrointestinal and some vascular smooth muscles (SM). Here, we demonstrate that in telokin-null SM, both Ca(2+)-activated contraction and Ca(2+) sensitization of force induced by a GST-MYPT1(654-880) fragment inhibiting myosin light chain phosphatase were antagonized by the addition of recombinant S13D telokin, without changing the inhibitory phosphorylation status of endogenous MYPT1 (the regulatory subunit of myosin light chain phosphatase) at Thr-696/Thr-853 or activity of Rho kinase. Cyclic nucleotide-induced relaxation of force in telokin-null ileum muscle was reduced but not correlated with a change in MYPT1 phosphorylation. The 40% inhibited activity of phosphorylated MYPT1 in telokin-null ileum homogenates was restored to nonphosphorylated MYPT1 levels by addition of S13D telokin. Using the GST-MYPT1 fragment as a ligand and SM homogenates from WT and telokin KO mice as a source of endogenous proteins, we found that only in the presence of endogenous telokin, thiophospho-GST-MYPT1 co-precipitated with phospho-20-kDa myosin regulatory light chain 20 and PP1. Surface plasmon resonance studies showed that S13D telokin bound to full-length phospho-MYPT1. Results of a protein ligation assay also supported interaction of endogenous phosphorylated MYPT1 with telokin in SM cells. We conclude that the mechanism of action of phospho-telokin is not through modulation of the MYPT1 phosphorylation status but rather it contributes to cyclic nucleotide-induced relaxation of SM by interacting with and activating the inhibited full-length phospho-MYPT1/PP1 through facilitating its binding to phosphomyosin and thus accelerating 20-kDa myosin regulatory light chain dephosphorylation.  相似文献   
89.
The reversible regulation of myosin light chain phosphatase (MLCP) in response to agonist stimulation and cAMP/cGMP signals plays an important role in the regulation of smooth muscle (SM) tone. Here, we investigated the mechanism underlying the inhibition of MLCP induced by the phosphorylation of myosin phosphatase targeting subunit (MYPT1), a regulatory subunit of MLCP, at Thr-696 and Thr-853 using glutathione S-transferase (GST)-MYPT1 fragments having the inhibitory phosphorylation sites. GST-MYPT1 fragments, including only Thr-696 and only Thr-853, inhibited purified MLCP (IC50 = 1.6 and 60 nm, respectively) when they were phosphorylated with RhoA-dependent kinase (ROCK). The activities of isolated catalytic subunits of type 1 and type 2A phosphatases (PP1 and PP2A) were insensitive to either fragment. Phospho-GST-MYPT1 fragments docked directly at the active site of MLCP, and this was blocked by a PP1/PP2A inhibitor microcystin (MC)-LR or by mutation of the active sites in PP1. GST-MYPT1 fragments induced a contraction of β-escin-permeabilized ileum SM at constant pCa 6.3 (EC50 = 2 μm), which was eliminated by Ala substitution of the fragment at Thr-696 or by ROCK inhibitors or 8Br-cGMP. GST-MYPT1-(697–880) was 5-times less potent than fragments including Thr-696. Relaxation induced by 8Br-cGMP was not affected by Ala substitution at Ser-695, a known phosphorylation site for protein kinase A/G. Thus, GST-MYPT1 fragments are phosphorylated by ROCK in permeabilized SM and mimic agonist-induced inhibition and cGMP-induced activation of MLCP. We propose a model in which MYPT1 phosphorylation at Thr-696 and Thr-853 causes an autoinhibition of MLCP that accounts for Ca2+ sensitization of smooth muscle force.The contractile state of smooth muscle (SM)3 is driven by phosphorylation of the regulatory myosin light chain and reflects the balance of the Ca2+-calmodulin-dependent myosin light chain kinase and myosin light chain phosphatase (MLCP) activities (1). The stoichiometry between force and [Ca2+] varies with different agonists (2), reflecting other signaling pathways that modulate the MLCP or myosin light chain kinase activities (35). Agonist activation of G-protein-coupled receptors triggers Ca2+ release from the sarcoplasmic reticulum. Simultaneously, G-protein-coupled receptor signals are mediated by Ca2+-independent phospholipase A2 (6) and initiate kinase signals, such as PKC, phosphoinositide 3-kinase (7), and ROCK. These lead to inhibition of MLCP activity resulting in an increase in regulatory myosin light chain phosphorylation independent of a change in Ca2+ (Ca2+ sensitization) (for review, see Ref. 1). K+ depolarization can also activate RhoA in a Ca2+-dependent manner (8). Conversely, Ca2+ desensitization occurs when nitric oxide production and the activation of Gas elevate cGMP and cAMP levels in SM, leading to dis-inhibition and restoration of MLCP activity (915). Thus, MLCP plays a pivotal role in controlling phosphorylation of myosin, in response to physiological stimulation.MLCP is a trimeric holoenzyme consisting of a catalytic subunit of protein phosphatase 1 (PP1) δ isoform and a regulatory complex of MYPT1 and an accessory M21 subunit (16). A PP1 binding site, KVKF38, is located at the N terminus of MYPT1 followed by an ankyrin-repeat domain. This N-terminal domain forms a part of the active site together with the catalytic subunit and controls the substrate specificity via allosteric interaction and targeting to loci (17). The C-terminal region of MYPT1 directly binds to substrates such as myosin and ezrin/radixin/moecin proteins as well as, under some conditions, the plasma membrane, tethering the catalytic subunit to multiple targets (18, 19). Furthermore, MYPT1 is involved in the regulation of MLCP activity. Alternative splicing of MYPT1 occurs in SM depending on the tissue and the developmental stage (20). An exon 13 splicing of MYPT1 is involved in Ca2+ sensitization that occurs in response to GTP (21), whereas a splice variant of MYPT1, containing the C-terminal Leu-zipper sequence, correlates with cGMP-dependent relaxation of smooth muscle (22). Direct binding of PKG to MYPT1 at the Leu-zipper domain and/or Arg/Lys-rich domain is involved in the activation of MLCP (2325). In addition, a myosin phosphatase-Rho interacting protein (M-RIP) is directly associated with the MYPT1 C-terminal domain, proposed to recruit RhoA to the MLCP complex (26). The C-terminal region also binds to ZIP kinase, which phosphorylates MYPT1 at Thr-6964 (27). Thus, the C-terminal domain of MYPT1 functions as a scaffold for multiple phosphatase regulatory proteins.Phosphorylation of MYPT1 at Thr-696 and Thr-853 and the phosphatase inhibitory protein CPI-17 at Thr-38 play dominant roles in the agonist-induced inhibition of MLCP (18, 2834), yet the molecular mechanism(s) of MYPT1 inhibitory phosphorylation is poorly understood. Receptor activation induces biphasic contraction of SM, reflecting a sequential activation of PKC and ROCK. Phosphorylation of CPI-17 occurs first in parallel with Ca2+ release and the activation of a conventional PKC that causes Ca2+-dependent Ca2+ sensitization (35). A delayed activation of ROCK increases the phosphorylation of MYPT1 at Thr-853. These phosphorylation events maintain the sustained phase of contraction after the fall in [Ca2+]i (35). Phosphorylation of MYPT1 at Thr-853 is elevated in response to various agonists (35, 36). Unlike the Thr-853 site, phosphorylation of MYPT1 at Thr-696 is often spontaneously phosphorylated under resting conditions and insensitive to stimuli with most agonists (36). Nonetheless, up-regulation of MYPT1 phosphorylation at Thr-696 is reported in some types of hypertensive animals and patients, suggesting an importance of the site under pathological conditions (3739). Phosphorylation of CPI-17 and MYPT1 at Thr-696 is reversed in response to nitric oxide production and cGMP elevation, which parallels relaxation (14, 15). Upon cGMP elevation, MYPT1 at Ser-695 is phosphorylated, and the Ser phosphorylation blocks the adjacent phosphorylation at Thr-696, causing dis-inhibition of MLCP (27, 40). However, Ser-695 phosphorylation does not cause the dephosphorylation at Thr-696 in intact cerebral artery (41). Thus, phosphorylation of MYPT1 governs Ca2+ sensitization and desensitization of SM, although the underlying mechanisms are still controversial. In addition, telokin, a dominant protein in visceral and phasic vascular SM tissues, is phosphorylated by PKG and PKA, activating MLCP by an unknown mechanism and inducing SM relaxation (42).Multiple mechanisms have been suggested for the phosphorylation-dependent inhibition of MLCP. Thiophosphorylation of MYPT1 results in lower Vm and higher Km values of MLCP activity, suggesting that allosteric modulation of the active site is necessary for the thiophosphorylation-dependent inhibition of MLCP (43). On the other hand, translocation of MYPT1 to the plasma membrane region occurs in parallel with the phosphorylation of MYPT1 at Thr-696 (44, 45), but the amount translocated and the functional meaning remain controversial (41). Phosphorylation of MYPT1 at Thr-853 in vitro reduces its affinity for phospho-myosin, thus suppressing the phosphatase activity (18). It has also been demonstrated that reconstitution of thiophosphorylated MYPT1 at Thr-696 or Thr-853 with isolated PP1δ produces a less-active form of MLCP complex (46). This supports the kinetic analysis (43) that suggests an allosteric effect of MYPT1 phosphorylation on the phosphatase activity. In contrast, a thiophosphopeptide mimicking the phosphorylation site of MBS85, a homolog of MYPT1 and not present in SM, inhibits the activity of MBS85·PP1 complex, suggesting the direct interaction between the MBS85 site and PP1 (47). In the crystal structure model of MYPT1-(1–229). PP1δ complex, the electrostatic potential map at the MLCP active site complements amino acid profiles around the phosphorylation sites (17). Therefore, it is possible that the inhibitory phosphorylation sites directly dock at the active site of MLCP and inhibit the activity. Here, we examine mechanisms underlying the inhibition of MLCP through the phosphorylation of MYPT1 at Thr-696 and Thr-853 using GST fusion versions of various MYPT1 fragments including or excluding either or both of these phosphorylation sites. Phosphorylated MYPT1 fragments including either Thr-696 or Thr-853 potently and specifically inhibit MLCP purified from pig aorta and the enzyme associated with myofilaments in permeabilized ileum SM tissues. We further show that inhibition of MLCP in SM tissues is eliminated by activation of PKA/PKG, suggesting that the GST-MYPT1 fragments mimic agonist-induced autoinhibition and cAMP/cGMP-dependent dis-autoinhibition of MLCP in SM.  相似文献   
90.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号